Если процессор – это сердце персонального компьютера, то шины – это артерии и вены по которым текут электрические сигналы. Строго говоря, это каналы связи, применяемые для организации взаимодействия между устройствами компьютера. Кстати, если Вы думаете, что те разъемы, куда вставляются платы расширения и есть шины, то Вы жестоко ошибаетесь. Это интерфейсы (слоты, разъемы), с их помощью осуществляется подключение к шинам, которых, зачастую, вообще не видно на материнских платах.

Существует три основных показателя работы шины. Это тактовая частота, разрядность и скорость передачи данных. Начнем по порядку.

Тактовая частота

Работа любого цифрового компьютера зависит от тактовой частоты, которую определяет кварцевый резонатор. Он представляет собой оловянный контейнер в который помещен кристалл кварца. Под воздействием электрического напряжения в кристалле возникают колебания электрического тока. Вот эта самая частота колебания и называется тактовой частотой. Все изменения логических сигналов в любой микросхеме компьютера происходят через определенные интервалы, которые называются тактами. Отсюда сделаем вывод, что наименьшей единицей измерения времени для большинства логических устройств компьютера есть такт или еще по другому – период тактовой частоты. Проще говоря – на каждую операцию требуется минимум один такт (хотя некоторые современные устройства успевают выполнить несколько операций за один такт). Тактовая частота, применительно к персональным компьютерам, измеряется в МГц, где Герц – это одно колебание в секунду, соответственно 1 МГц – миллион колебаний в секунду. Теоретически, если системная шина Вашего компьютера работает на частоте в 100 МГц, то значит она может выполнять до 100 000 000 операций в секунду. К слову сказать, совсем не обязательно, что бы каждый компонент системы обязательно что-либо выполнял с каждым тактом. Существуют так называемые пустые такты (циклы ожидания), когда устройство находится в процессе ожидания ответа от какого либо другого устройства. Так, например, организована работа оперативной памяти и процессора (СPU), тактовая частота которого значительно выше тактовой частоты ОЗУ.

Разрядность

Шина состоит из нескольких каналов для передачи электрических сигналов. Если говорят, что шина тридцатидвухразрядная, то это означает, что она способна передавать электрические сигналы по тридцати двум каналам одновременно. Здесь есть одна фишка. Дело в том, что шина любой заявленной разрядности (8, 16, 32, 64) имеет, на самом деле, большее количество каналов. То есть, если взять ту же тридцатидвухразрядную шину, то для передачи собственно данных выделено 32 канала, а дополнительные каналы предназначены для передачи специфической информации.

Скорость передачи данных

Название этого параметра говорит само за себя. Он высчитывается по формуле:

тактовая частота * разрядность = скорость передачи данных

Сделаем расчет скорости передачи данных для 64 разрядной системной шины, работающей на тактовой частоте в 100 МГц.

100 * 64 = 6400 Мбит/сек
6400 / 8 = 800 Мбайт/сек

Но полученное число не является реальным. В жизни на шины влияет куча всевозможных факторов: неэффективная проводимость материалов, помехи, недостатки конструкции и сборки а также многое другое. По некоторым данным, разность между теоретической скоростью передачи данных и практической может составлять до 25%.
За работой каждой шины следят специально для этого предназначенные контроллеры. Они входят в состав набора системной логики (чипсет).
Разрядность FSB равна разрядности CPU. Если Вы используете 64 разрядный процессор, а тактовая частота системной шины 100 МГц, то скорость передачи данных будет равна 800 Мбайт/сек.
Теперь поговорим конкретно о тех шинах, которые присутствуют на материнской плате. Основной считается системная шина FSB (Front Side Bus). По этой шине передаются данные между процессором и оперативной памятью, а также между процессором и остальными устройствами персонального компьютера.

ISA (Industrial Standard Architecture –
промышленная стандартная архитектура)

Первая 8 разрядная шина ISA появилась в 1981 году, а в 1984 году появился ее 16 разрядный вариант. 8 разрядная ISA применялась в компьютерах класса ХТ и работала на частоте равной 4,77 МГц, а 16 разрядная – в АТ с частотой в 8,33 МГц.

На интерфейс 8 разрядной ISA было выведено 8 каналов данных и 20 каналов адреса. Все это позволяло адресовать до 1 Мбайт памяти. С появлением 80286 процессора, который мог обрабатывать уже 16 бит данных, появилась необходимость в 16 разрядной ISA, что и было реализовано в 1984 году. Разъем был дополнен еще 36 каналами, 8 из которых были выведены под данные, а 7 – под адрес. Следует отметить, что некоторые платы расширения, рассчитанные на 8 разрядную шину, могут работать и с 16 разрядной. Кстати, понятие ключ – выступ в разъеме и вырез в подключаемой плате, появился вместе с 16 разрядной ISA. Так как до 1987 года IBM отказывалась публиковать полное описание и временные диаграммы ISA, многие производители железа решились на разработку собственных шин. Так появилась 32 разрядная ISA, которая не нашла применения, но фактически предопределила появление шин MCA и EISA. В 1985 году фирма Intel разработала 32 разрядный 80386 процессор который увидел свет в конце 1986 года. Появилась насущная необходимость в 32 разрядной шине ввода/вывода. Вместо того, что бы продолжить дальнейшую разработку ISA, в IBM создали новую шину MCA (Micro Channel Architecture – микроканальная архитектура) которая во всех отношениях превосходила свою предшественницу:

1. Был использован арбитр шины CACP (Central Arbitration Control Point), который позволял любому подключенному к шине устройству передавать данные любому другому устройству, так же подключенному к этой шине. Кроме этого, CACP предотвращал конфликты и монополизацию шины каким либо одним устройством.
2. Шина MCA не синхронизирована с процессором, что позволяет снизить возможность лишних конфликтов и помех между платами.
3. Отсутствие переключателей и перемычек свело установку плат расширения к простому, не требующему дополнительной квалификации, действию.

Но сей стандарт умер, прожив весьма короткую жизнь. И дело тут вот в чем: во-первых фирма IBM потребовала от всех фирм – производителей, желающих использовать MCA заплатить бабки за использование ISA во всех ранее выпущенных компьютерах. Естественно IBM послали куда подальше. Во-вторых, компьютерный мир оказался попросту не готов принять в 1987 году подход Plug and Play. В-третьих, цена первых MCA мягко говоря кусалась. Все эти факторы привели к появлению шины EISA, так что MCA можете выбросить из головы.

EISA (Extended Industry Standard Architecture –
расширенная промышленная стандартная архитектура)

Диктатура IBM на рынке производства шин очень не нравилась представителям небезызвестной фирмы Compaq. С несколькими фирмами – партнерами Compaq создала комитет EISA который занимался разработкой нового стандарта. Уже в 1989 году появились первые персональные компьютеры, материнские платы которых были оснащены шиной EISA. Основное ее отличие заключалось в 32 разрядной технологии, хотя и создавалась она на основе архитектуры все той же ISA (тактовая частота осталась прежней – 8,33 МГц). Преимущества новой технологии очевидны: как и в MCA, используется арбитраж запросов ISP (Integrated System Peripheral), повысилась скорость обмена данными, мощность, потребляемая каждым из адаптеров может достигать 45 Вт. При этом была сохранена совместимость с платами, рассчитанными для работы с ISA. Скорость передачи данных равнялась 33 Мбайт/сек. Ко всему прочему, в компьютерах с шиной EISA была предусмотрена возможность автоматической настройки прерываний и адресов адаптеров. Но к сожалению и этот проект через короткое время был похерен. И, кстати, не без помощи самой же Compaq, которая как и IBM пыталась урвать жирный кусок пирога.

С повышением тактовых частот и разрядности процессоров настала насущная проблема в повышении скорости передачи данных в шинах (какой смысл использовать камень с тактовой частотой, скажем, 66 МГц, если шина работает на частоте лишь 8,33 МГц). В одних случаях, например клавиатура или мышь, высокая скорость ни к чему. Но инженеры фирм, производителей плат расширения, готовы были изготовлять устройства со скоростью, которую шины не могли предоставить. Итак, какое же решение было принято? Часть операций по обмену данными осуществлять не через стандартные разъемы шины ввода/вывода, а через дополнительные высокоскоростные интерфейсы. Дело в том, что эти самые высокоскоростные интерфейсы подключаются к шине процессора. Из этого следует, что подключаемые платы будут иметь доступ непосредственно к процессору через его шину. Вся эта фигня и получила название LB (Local Bus – локальная шина). Между прочим, первые шины ISA как раз и были локальными но когда их тактовая частота превысила 8 МГц, произошло разделение. А в 1992 году появился еще один расширенный вариант ISA – VLB (VESA Local Bus)

VLB

VLB была локальной шиной, которая не изменяла, а дополняла существующие стандарты. Просто к основным шинам добавлялось несколько новых быстродействующих локальных слотов. Популярность шины VLB продлилась до 1994 года. Кстати, VESA это Video Electronic Standard Association, кто знает английский, тот понял, что это ассоциация, которая, кстати, и предложила новую, уже действительно локальную, шину (не без участия фирмы NEC). Скорость передачи данных VLB равнялась 128 – 132 Мбайт/сек, а разрядность –32. Тактовая частота достигала 50 МГц, но реально не превышала 33 МГц в связи с частотными ограничениями самих слотов. Дополнительные разъемы VLB имеют 116 контактов. Основная функция, для которой была предназначена новая шина – обмен данными с видеоадаптером. Но новая шина имела ряд недостатков, которые не позволили ей долго просуществовать на рынке инфотехнологий. Ну да ладно: чем дальше в лес, тем толще партизаны. Уже в 1992 году начались разработки новой локальной шины PCI

PCI. (Peripheral Component Interconnect bus –
шина соединения периферийных компонентов)

В июне 1992 года на сцене появился новый стандарт – PCI, родителем которого была фирма Intel, а точнее организованная ею группа Special Interest Group. К началу 1993 года появился модернизированный вариант PCI. По сути дела эта шина не является локальной. Напомню, что локальной шиной называется та шина, которая подключена к системной шине напрямую. PCI же для подключения к оной использует Host Bridge (главный мост), а так же еще и Peer-to-Peer Bridge (одноранговый мост) который предназначен для соединения двух шин PCI. Кроме всего прочего, PCI является сама по себе мостом между ISA и шиной процессора. Сказать, что появление шины PCI на рынке подстегнуло производителей всевозможных устройств к действию означает не сказать вообще ничего. Это было своеобразной маленькой революцией. Разнообразие плат расширения, использующих шину PCI настолько велико, что я не вижу смысла их перечислять. Тактовая частота PCI может быть равна или 33 МГц или 66 МГц. Разрядность – 32 или 64. Скорость передачи данных – 132 Мбайт/сек или 264 Мбайт/сек. Стандартом PCI предусмотрены три типа плат в зависимости от питания:

1. 5 Вольт – для стационарных компьютеров
2. 3,3 Вольт – для портативных компьютеров
3. Универсальные платы могущие работать в обоих типах компьютеров.

Большим плюсом шины PCI является удовлетворение спецификации Plug and Play – по тем временам очень крутая фича. Кроме этого, в шине PCI любая передача сигналов происходит пакетным образом где каждый пакет разбит на фазы. Начинается пакет с фазы адреса, за которой, как правило, следует один или несколько фаз данных. Количество фаз данных в пакете может быть неопределенно, но ограничено таймером, который определяет максимальное время, в течение которого устройство может использоваться шиной. Такой вот таймер имеет каждое подключенное устройство, а его значение может быть задано при конфигурировании. Для организации работы по передачи данных используется арбитр. Дело в том, что на шине могут находиться два типа устройств – мастер (инициатор, хозяин, ведущий) шины и подчиненный. Мастер берет на себя контроль за шиной и инициирует передачу данных к адресату, т. е. подчиненному устройству. Мастером или подчиненным может быть любое подключенное к шине устройство и иерархия эта постоянно меняется в зависимости от того, какое устройство запросило у арбитра шины разрешения на передачу данных и кому. За бесконфликтную работу шины PCI отвечает чипсет, а точнее North Bridge. Но на PCI жизнь не остановила своего течения. Постоянное усовершенствование видеокарт привело к тому, что физических параметров шины PCI стало не хватать, что и привело к появлению AGP.

AGP (Accelerated Graphics Port – ускоренный графический порт)

а материнской плате этот порт существует в единственном виде (а больше и не к чему). Ни физически, ни логически он не зависит от PCI. Первый стандарт AGP 1.0 появился в 1996 году благодаря инженерам фирмы Intel. Этой спецификации соответствовала тактовая частота 66,66 МГц, режим сигнализации 1х и 2х, а также напряжение равное 3,3 В. Следующая версия, AGP 2.0, появилась на свет в 1998 году и имела режим сигнализации 4х и рабочее напряжение равное 1,5 В. Скорость передачи данных – 533 Мбайт/сек (2х) и 1066 Мбайт/сек (4х). А чего же это такое – 2х, 4х? Объясняю: основной (базовый) режим AGP называется 1х. В этом режиме происходит одиночная передача данных за каждый цикл. В режиме 2х передача происходит два раза за цикл. Теперь для тех, кто на бронепоезде: в режиме 4х передача данных происходит четыре раза за каждый цикл. И так далее. Ширина AGP 1.0 – 32 бита. Большим достижением AGP является то, что эта спецификация позволяет получить быстрый доступ к оперативной памяти так как является локальным (или локальной, кому как нравиться).